Pseudo Unique Sink Orientations
نویسندگان
چکیده
A unique sink orientation (USO) is an orientation of the n-dimensional cube graph (n-cube) such that every face (subcube) has a unique sink. The number of unique sink orientations is nΘ(2 n) [13]. If a cube orientation is not a USO, it contains a pseudo unique sink orientation (PUSO): an orientation of some subcube such that every proper face of it has a unique sink, but the subcube itself hasn’t. In this paper, we characterize and count PUSOs of the n-cube. We show that PUSOs have a much more rigid structure than USOs and that their number is between 2Ω(2 n−logn) and 2O(2 n) which is negligible compared to the number of USOs. As tools, we introduce and characterize two new classes of USOs: border USOs (USOs that appear as facets of PUSOs), and odd USOs which are dual to border USOs but easier to understand.
منابع مشابه
Unique Sink Orientations of Cubes
Subject of this thesis is the theory of unique sink orientations of cubes. Such orientations are suitable to model problems from different areas of combinatorial optimization. In particular, unique sink orientations are closely related to the running time of the simplex algorithm. In the following, we try to answer three main questions: How can optimization problems be translated into the frame...
متن کاملClassical and Quantum Algorithms for USO Recognition
Unique Sink Orientations (USOs) are orientations of the hypercube graph capable of encoding many optimization problems, such as linear programming. When a USO is given in implicit form as an oracle, the USO recognition problem aims to distinguish USO from non-USO oracles. In this thesis we introduce a new type of orientation, the pseudo-USOs, which are closely related to the USO recognition pro...
متن کاملUnique Sink Orientations of Cubes
Suppose we are given (the edge graph of) an dimensional hypercube with its edges oriented so that every face has a unique sink. Such an orientation is called a unique sink orientation, and we are interested in finding the unique sink of the whole cube, when the orientation is given implicitly. The basic operation available is the socalled vertex evaluation, where we can access an arbitrary vert...
متن کاملCounting Unique-Sink Orientations
Unique-sink orientations (USOs) are an abstract class of orientations of the ncube graph. We consider some classes of USOs that are of interest in connection with the linear complementarity problem. We summarise old and show new lower and upper bounds on the sizes of some such classes. Furthermore, we provide a characterisation of K-matrices in terms of their corresponding USOs.
متن کاملSinks in Acyclic Orientations of Graphs
Greene and Zaslavsky proved that the number of acyclic orientations of a graph G with a unique sink at a given vertex is, up to sign, the linear coefficient of the chromatic polynomial. We give three proofs of this result using pure induction, noncommutative symmetric functions, and an algorithmic bijection. We also prove their result that if e=u0v0 is an edge of G then the number of acyclic or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.08481 شماره
صفحات -
تاریخ انتشار 2017